The influence of genetic factors on the osteoinductive potential of calcium phosphate ceramics in mice.
نویسندگان
چکیده
The efficacy of calcium phosphate (CaP) ceramics in healing large bone defects is, in general, not as high as that of autologous bone grafting. Recently, we reported that CaP ceramics with osteoinductive properties were as efficient in healing an ilium defect of a sheep as autologous bone graft was, which makes this subclass of CaP ceramics a powerful alternative for bone regeneration. Although osteoinduction by CaP ceramics has been shown in several large animal models it is sporadically reported in mice. Because the lack of a robust mouse model has delayed understanding of the mechanism, we screened mice from 11 different inbred mouse strains for their responsiveness to subcutaneous implantation of osteoinductive tricalcium phosphate (TCP). In only two strains (FVB and 129S2) the ceramic induced bone formation, and in particularly, in FVB mice, bone was found in all the tested mice. We also demonstrated that other CaP ceramics induced bone formation at the same magnitude as that observed in other animal models. Furthermore, VEGF did not significantly increase TCP induced bone formation. The mouse model here described can accelerate research of osteoinductive mechanisms triggered by CaP ceramics and potentially the development of therapies for bone regeneration.
منابع مشابه
The material and biological characteristics of osteoinductive calcium phosphate ceramics
The discovery of osteoinductivity of calcium phosphate (Ca-P) ceramics has set an enduring paradigm of conferring biological regenerative activity to materials with carefully designed structural characteristics. The unique phase composition and porous structural features of osteoinductive Ca-P ceramics allow it to interact with signaling molecules and extracellular matrices in the host system, ...
متن کاملAddition of Alumina to Nanoporous Calcium Titanium Phosphate Glass-Ceramics and its Effects on Crystallization Behavior
Microporous Calcium Titanium Phosphate glass-ceramics have many uses in high-tech industries. For example, they have applications in catalysts industry. In this study, different molar percentages of alumina were added to a glass with P2O5 30, CaO 45, TiO2 25 (mol%) composition. The samples were melted at 1350°C and crystallization heat treatment was performed on...
متن کاملCRYSTALLIZATION AND SINTERABILITY BEHAVIOR OF BIORESORBABLE CaO-P2O5-Na2O-TiO2 GLASS CERAMICS FOR BONE REGENERATION APPLICATION
Abstract:Some types of glass and glass ceramics have a great potential for making bone tissue engineering scaffolds, drug carrier and bone cements as they can bond to host bone, stimulate bone cells toward osteogenesis, and resorb at the same time as the bone is repaired. Calcium phosphate glass ceramics have very attractive properties that allow them to use in bone tissue engineering. Calcium ...
متن کاملEffect of nano-hydroxyapatite coating on the osteoinductivity of porous biphasic calcium phosphate ceramics
BACKGROUND Porous biphasic calcium phosphate (BCP) ceramics exhibit good biocompatibility and bone conduction but are not inherently osteoinductive. To overcome this disadvantage, we coated conventional porous BCP ceramics with nano-hydroxyapatite (nHA). nHA was chosen as a coating material due to its high osteoinductive potential. METHODS We used a hydrothermal deposition method to coat conv...
متن کاملCeramic drug delivery: a perspective.
Different ceramic substances are offered in the market as bone substitute materials. These include monophasic calcium phosphate ceramics of tricalciumphosphate (TCP) or hydroxyapatite (HA), biphasic calcium phosphate ceramics and multiphasic bio-glasses synthetic calcium phosphate cements. Ceramics with appropriate three-dimensional geometry are able to bind and concentrate bone morphogenetic p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 33 23 شماره
صفحات -
تاریخ انتشار 2012